Skip to main content

Digilasku osa 3


Digilaskussa on jo nyt yli kaksikymmentä erilaista lomaketta. Syötekenttiä on noin 200. Yksi digilaskun onnistuneimpia osioita on näiden hallinta: syötekenttien validointi on pysynyt kohtuullisen hyvin kasassa.

Jokainen lomake on omassa luokassaan, joka perii Vaatimen Form-luokan. Laskujen, lähetteiden ja tarjousten formit perivät vielä tätä ennen abstraktin luokan, joka määrittelee näille yhteiset ominaisuudet. Lähes kaikki formit käyttävät suoraan Vaatimen datamallia, eli Java Beanit tai POJOT asetetaan suoraan formeihin. Datan tallennus onnistuu siis helposti ilman manuaalisia parsimisia, sillä formista tulee suoraan ulos ehjä objekti tietokantaan tallennettavaksi.

Formin syötekentissä käytetään useita erilaisia validaattoreita, jotka ovat myös omissa luokissaan. Syötekenttiä on yleistetty aina kun mahdollista, jotta vältytään perusvalidointien turhalta toistolta syötekentän luomisessa. Vaatimen vahvuuksia on ehdottomasti monipuolinen syötekenttien validointi.

Päädyimme toteuttamaan paljon applikaation logiikkaa tallennusnappuloihin. Suurimmaksi osin tämä toimii aika hyvin, vaikka paikoitellen rikomme räikeästi olio-ohjelmoinnin perussääntöjä, mutta toisaalta, nyt bugien lähteet on suhteellisen helppo selvittää. Elegantimpi tapa olisi tehdä itse lomakkeista funktionaalisempia, jolloin data ja sitä käsittelevät metodit olisivat samassa paikassa.
private Button getSaveButton() {
  Button save = new Button("Tallenna");
  save.addListener(new Button.ClickListener() {

   public void buttonClick(ClickEvent event) {
    PersistenceManager pm = PMF.get().getPersistenceManager();
    try {
     adminForm.commit();
     userForm.commit();
     user.setAccountId(ac.getAccountid());
     user.setUserType(DigilaskuApplication.USERTYPE_ADMIN);
     pm.makePersistent(ac);
     pm.makePersistent(user);
     NotificationFactory.showSaveMessage();
    } catch (Exception e) {

    } finally {
     pm.close();
    }

   }
  });
  return save;
 }

Comments

Popular posts from this blog

I'm not a passionate developer

A family friend of mine is an airlane pilot. A dream job for most, right? As a child, I certainly thought so. Now that I can have grown-up talks with him, I have discovered a more accurate description of his profession. He says that the truth about the job is that it is boring. To me, that is not that surprising. Airplanes are cool and all, but when you are in the middle of the Atlantic sitting next to the colleague you have been talking to past five years, how stimulating can that be? When he says the job is boring, it is not a bad kind of boring. It is a very specific boring. The "boring" you would want as a passenger. Uneventful.  Yet, he loves his job. According to him, an experienced pilot is most pleased when each and every tiny thing in the flight plan - goes according to plan. Passengers in the cabin of an expert pilot sit in the comfort of not even noticing who is flying. As someone employed in a field where being boring is not exactly in high demand, this sounds pro...

Emit structured Postgres data change events with wal2json

A common thing I see in an enterprise system is that when an end-user does some action, say add a user, the underlying web of subsystems adds the user to multiple databases in separate transactions. Each of these transactions may happen in varying order and, even worse, can fail, leaving the system in an inconsistent state. A better way could be to write the user data to some main database and then other subsystems like search indexes, pull/push the data to other interested parties, thus eliminating the need for multiple end-user originating boundary transactions. That's the theory part; how about a technical solution. The idea of this post came from the koodia pinnan alla podcast about event-driven systems and CDC . One of the discussion topics in the show is emitting events from Postgres transaction logs.  I built an utterly simple change emitter and reader using Postgres with the wal2json transaction decoding plugin and a custom go event parser. I'll stick to the boring ...

Extracting object properties from an IFC file with IfcOpenShell

Besides the object geometry information, IFC files may contain properties for the IFC objects. The properties can be, for example, some predefined dimension information such as an object volume or a choice of material. Some of the properties are predefined in the IFC standards, but custom ones can be added. IFC files can be massive and resource-intensive to process, so in some cases, it helps to separate the object properties from the geometry data. IfcOpenShell  is a toolset for processing IFC files. It is written mostly in C++ but also provides a Python interface. To read an IFC file >>> ifc_file = ifcopenshell.open("model.ifc") Fetch all objects of type IfcSlab >>> slab = ifc_file.by_type("IfcSlab")[1] Get the list of properties >>> slab.IsDefinedBy (#145075=IfcRelDefinesByType('2_fok0__fAcBZmMlQcYwie',#1,$,$,(#27,#59),#145074), #145140=IfcRelDefinesByProperties('3U2LyORgXC2f_hWf6I16C1',#1,$,$,(#27,#59),#145141), #145142...