A recent blog post by Pete Koomen about how we still lack truly "AI-native" software got me thinking about the kinds of applications I’d like to see. As the blog post says, AI should handle the boring stuff and leave the interesting parts for me. I listed down a few tasks I've dealt with recently and wrote some system prompts for potential agentic AIs: Check that the GDPR subprocessor list is up to date. Also, ensure we have a signed data processing agreement in place with the necessary vendors. Write a summary of what you did and highlight any oddities or potentially outdated vendors. Review our product’s public-facing API. Ensure the domain objects are named consistently. Here's a link to our documentation describing the domain. Conduct a SOC 2 audit of our system and write a report with your findings. Send the report to Slack. Once you get approval, start implementing the necessary changes. These could include HR-related updates, changes to cloud infras...
I gave a tech talk at a Python meetup titled "Overengineering an LLM pipeline". It's based on my experiences of building production-grade stuff with LLMs I'm not sure how overengineered it actually turned out. Experimental would be a better term as it is using PydanticAI graphs library, which is in its very early stages as of writing this, although arguably already better than some of the pipeline libraries. Anyway, here is a link to it. It is a CLI poker app where you play one hand against an LLM. The LLM (theoretically) gets better with a self-correcting mechanism based on the evaluation score from another LLM. It uses the annotated past games as an additional context to potentially improve its decision-making. https://github.com/juho-y/archipylago-poker