Skip to main content

Distroless image internals

We used a Google "distroless" image as the base image on a go application deployment in a project a while ago. I never looked into what distroless really means, but I had a guess. I'm also curious to look under the hood of a docker image if they really are just merged archives.

Recently there was a "Docker without docker" blog post in Hacker news about how simple docker (or rather, OCI) image format is. Spoiler: an image is tar archives on top of tar archives. The post has also a detailed explanation of how to pull images from a container registry. I shamelessly took the image pull script they shared and modified it a bit to pull the static distroless image from the Google container registry.

The image is only one layer, and here is how it looks like after I extracted it and removed all the root level empty directories with all directories with at least one file expanded.

It looks pretty empty to me, and I suppose that's the origin of the distroless term! :thinksmart:

I compared it to an alpine image with the GNU/Linux diff tool, and the output is enormous.

Comments

Popular posts from this blog

I'm not a passionate developer

A family friend of mine is an airlane pilot. A dream job for most, right? As a child, I certainly thought so. Now that I can have grown-up talks with him, I have discovered a more accurate description of his profession. He says that the truth about the job is that it is boring. To me, that is not that surprising. Airplanes are cool and all, but when you are in the middle of the Atlantic sitting next to the colleague you have been talking to past five years, how stimulating can that be? When he says the job is boring, it is not a bad kind of boring. It is a very specific boring. The "boring" you would want as a passenger. Uneventful.  Yet, he loves his job. According to him, an experienced pilot is most pleased when each and every tiny thing in the flight plan - goes according to plan. Passengers in the cabin of an expert pilot sit in the comfort of not even noticing who is flying. As someone employed in a field where being boring is not exactly in high demand, this sounds pro...

PydanticAI + evals + LiteLLM pipeline

I gave a tech talk at a Python meetup titled "Overengineering an LLM pipeline". It's based on my experiences of building production-grade stuff with LLMs I'm not sure how overengineered it actually turned out. Experimental would be a better term as it is using PydanticAI graphs library, which is in its very early stages as of writing this, although arguably already better than some of the pipeline libraries. Anyway, here is a link to it. It is a CLI poker app where you play one hand against an LLM. The LLM (theoretically) gets better with a self-correcting mechanism based on the evaluation score from another LLM. It uses the annotated past games as an additional context to potentially improve its decision-making. https://github.com/juho-y/archipylago-poker

Careful with externalTrafficPolicy

On a project I am working on is hosted in an EKS cluster with the NGINX ingress controller (the one maintained by Kubernetes). It is deployed using it's official official Helm chart, which I realized, after a lengthy debugging session, was a mistake. The initial setup I aimed to improve had several flaws. Firstly, we were using the AWS Classic Load Balancer in front of the nginx ingress in the cluster, which has been deprecated for some time (years?). Continuing to use it makes little sense to us. The second issue was that we were only running one(!) nginx pod, which is quite sketchy since the exposed web services had essentially no high availability.  I switched to the Network Load Balancer (NLB), which was straightforward - I just needed to change the ingress-nginx service annotation to specify the load balancer type as NLB: service.beta.kubernetes.io/aws-load-balancer-type: nlb However, increasing the replica count turned out to be tricky. When I bumped it up to two, I began to ...