Skip to main content

Remote file size with a HTTP HEAD request

I learned from my brilliant colleagues a nice trick that left me once again wondering why on earth I discover these things only now. It's funny to run into something literally everyone else knows, and somehow, I miss.

Say you have a file that you want to download on some trusted server. You may have a version of the file downloaded, but it may be somehow corrupted or partially downloaded. You could verify the file integrity by comparing the local and remote file hashes, and that is indeed a proper way to do it. 

If you trust the remote, you can use plain old HTTPS to get the headers only with a HEAD request and get the content length.

Just compare the result to local, and there you have it, a naive yet adequate method to check if you need to redownload a file. Note that this does not validate that the file contents are equal. 

Comments

Popular posts from this blog

I'm not a passionate developer

A family friend of mine is an airlane pilot. A dream job for most, right? As a child, I certainly thought so. Now that I can have grown-up talks with him, I have discovered a more accurate description of his profession. He says that the truth about the job is that it is boring. To me, that is not that surprising. Airplanes are cool and all, but when you are in the middle of the Atlantic sitting next to the colleague you have been talking to past five years, how stimulating can that be? When he says the job is boring, it is not a bad kind of boring. It is a very specific boring. The "boring" you would want as a passenger. Uneventful.  Yet, he loves his job. According to him, an experienced pilot is most pleased when each and every tiny thing in the flight plan - goes according to plan. Passengers in the cabin of an expert pilot sit in the comfort of not even noticing who is flying. As someone employed in a field where being boring is not exactly in high demand, this sounds pro...

PydanticAI + evals + LiteLLM pipeline

I gave a tech talk at a Python meetup titled "Overengineering an LLM pipeline". It's based on my experiences of building production-grade stuff with LLMs I'm not sure how overengineered it actually turned out. Experimental would be a better term as it is using PydanticAI graphs library, which is in its very early stages as of writing this, although arguably already better than some of the pipeline libraries. Anyway, here is a link to it. It is a CLI poker app where you play one hand against an LLM. The LLM (theoretically) gets better with a self-correcting mechanism based on the evaluation score from another LLM. It uses the annotated past games as an additional context to potentially improve its decision-making. https://github.com/juho-y/archipylago-poker

Careful with externalTrafficPolicy

On a project I am working on is hosted in an EKS cluster with the NGINX ingress controller (the one maintained by Kubernetes). It is deployed using it's official official Helm chart, which I realized, after a lengthy debugging session, was a mistake. The initial setup I aimed to improve had several flaws. Firstly, we were using the AWS Classic Load Balancer in front of the nginx ingress in the cluster, which has been deprecated for some time (years?). Continuing to use it makes little sense to us. The second issue was that we were only running one(!) nginx pod, which is quite sketchy since the exposed web services had essentially no high availability.  I switched to the Network Load Balancer (NLB), which was straightforward - I just needed to change the ingress-nginx service annotation to specify the load balancer type as NLB: service.beta.kubernetes.io/aws-load-balancer-type: nlb However, increasing the replica count turned out to be tricky. When I bumped it up to two, I began to ...