Skip to main content

Flame graph from a Scala app

Apologies for the large SVG




I got inspired by a Devoxx talk about flame graphs and how they can visualize what is happening on a JVM process.

Getting a graph is actually quite simple. You only need a recent enough Java 8 JDK, a running subject JVM process running on linux, perf which is part of kernel utils in most distributions and a couple of simple profiling tools which are open source. Detailed infomation can be found in a blog post by Nitsan Wakart here http://psy-lob-saw.blogspot.fi/2017/02/flamegraphs-intro-fire-for-everyone.html

So what is in that SVG.

It is illustrating what was happening on a Scala app I'm running on a DigitalOcean pod sampled 100 times a second during a 40 second period. The bars describe call stacks and the topmost item is always the one running in the CPU. More details how to read the graph can be found here http://www.brendangregg.com/flamegraphs.html

In this case the stacks are divided to threads. The leftmost stuff (thread) contains a lot of GC operations although upon closer inspection you can see that is happening on other threads as well. Then right to that thread there are a lot of sample points spent on JVM methods related to JIT (at least i assume that from the method names which contain C1 and C2 keywords). As you can see quite a lot of the total samples were related to JIT compiling which most probably tells that the application was still warming up so to speak.

On the other hand when looking at the application code there is already some in-lining visible marked with aqua color. I'm not 100% sure on how to interpret those stacks though. I assume that the methods call on top of each other bounded by green (scala) method calls are in-lined to each other.

What can I learn from this flame graph? I'm certainly not an expert in JVM nor in performance tuning but some of my suspicions where I could improve the performance are visible. I could reduce the amount of disk IO by not reading the configs from disk each time. Also I could look into caching the results of XML transform operations which this particular application does a lot. In another graph where the treads are squashed together, that becomes more visible. Obviously I knew those operations are relatively slow beforehand and also i could have just used visualvm or some other more familiar tool to see that as well.

Finding hotspots in the Scala code is not necessarily the most interesting part of this graph. What I found fascinating is the visibility of the whole linux process with kernel calls included. Interestingly enough in the graph the embedded RocksDB stack presents itself as a surprisingly minor CPU consumer. Have to say it is also surprising that almost 40% of the calls are not any code related to the application code itself.

https://jompanakumpana.fi/flames.svg


Comments

Popular posts from this blog

I'm not a passionate developer

A family friend of mine is an airlane pilot. A dream job for most, right? As a child, I certainly thought so. Now that I can have grown-up talks with him, I have discovered a more accurate description of his profession. He says that the truth about the job is that it is boring. To me, that is not that surprising. Airplanes are cool and all, but when you are in the middle of the Atlantic sitting next to the colleague you have been talking to past five years, how stimulating can that be? When he says the job is boring, it is not a bad kind of boring. It is a very specific boring. The "boring" you would want as a passenger. Uneventful.  Yet, he loves his job. According to him, an experienced pilot is most pleased when each and every tiny thing in the flight plan - goes according to plan. Passengers in the cabin of an expert pilot sit in the comfort of not even noticing who is flying. As someone employed in a field where being boring is not exactly in high demand, this sounds pro...

Canyon Precede:ON 7

I bought or technically leased a Canyon Precede:ON 7 (2022) electric bike last fall. This post is about my experiences with it after riding for about 2000 km this winter. The season was a bit colder than usual, and we had more snow than in years, so I properly put the bike through its paces. I've been cycling for almost 20 years. I've never owned a car nor used public transport regularly. I pedal all distances below 30km in all seasons. Besides commuting, I've mountain biked and raced BMX, and I still actively ride my road bike during the spring and summer months. I've owned a handful of bikes and kept them until their frames failed. Buying new bikes or gear has not been a major part of my hobby, and frankly, I'm quite sceptical about the benefits of updating bikes or gear frequently. I've never owned an E-bike before, but I've rented one a couple of times. The bike arrived in a hilariously large box. I suppose there's no need to worry about damage durin...

Extracting object properties from an IFC file with IfcOpenShell

Besides the object geometry information, IFC files may contain properties for the IFC objects. The properties can be, for example, some predefined dimension information such as an object volume or a choice of material. Some of the properties are predefined in the IFC standards, but custom ones can be added. IFC files can be massive and resource-intensive to process, so in some cases, it helps to separate the object properties from the geometry data. IfcOpenShell  is a toolset for processing IFC files. It is written mostly in C++ but also provides a Python interface. To read an IFC file >>> ifc_file = ifcopenshell.open("model.ifc") Fetch all objects of type IfcSlab >>> slab = ifc_file.by_type("IfcSlab")[1] Get the list of properties >>> slab.IsDefinedBy (#145075=IfcRelDefinesByType('2_fok0__fAcBZmMlQcYwie',#1,$,$,(#27,#59),#145074), #145140=IfcRelDefinesByProperties('3U2LyORgXC2f_hWf6I16C1',#1,$,$,(#27,#59),#145141), #145142...