Skip to main content

Liferay LAR-tiedostot

Eräässä projektissa pääasiallinen asiakkaalle näkyvä käyttöliittymä on tehty Liferayn päälle. Käyttöliittymän lisäksi pidämme käyttäjät ja näiden oikeudet liferayn hallinnassa. Asiakkaille on olemassa omat Liferay instanssinsa eri teemoituksineen. Testiympäristöissä on tuotannon tilaa vastaavia referenssiinstansseja. Uudet sivut ja näiden oikeudet siirretään LAR tiedostoissa tuotantoon. Olemme myös käyttäneet Liferaytä piilottamaan tai näyttämään jotain ominaisuuksia vain tietyille käyttäjille.

Ongelmana on että emme ole testanneet ikinä automaattisesti LAR-tiedostoja. Tästä on seurannut useita huolimattomuusvirheitä. Haluamme että esimerkiksi vain tietyt käyttäjät näkevät jonkun portletin, mutta se onkin näkynyt kaikille

Olemme nykyään varautuneet deploymentteihin sekä testaamalla itse LAR-tiedostot, että ajamalla muutamia SQL-skriptejä tuotannon tietokantaa vasten. LAR-tiedostot ovat pakattuja XML-tiedostoja, joissa on mm. sivujen urlit ja hierarkiat pääsyoikeuksineen. Kun nämä ladataan tuotantoinstanssiin, tiedot kopioituvat lähes suoraan Liferayn tietokantaan. Tietokantatauluissa on myös XML:ää

LAR tiedostot ovat varmasti ihan kohtalainen tapa siirtää konfiguraatioita eri instanssien välillä. Ongelmana tapauksessamme on kuitenkin se että siirrämme niiden mukana hyvin tärkeitä ensimmäisen vaiheen autorisointitietoja. On hyvin kiusallista jos nämä menevät väärin. Testiympäristöissä käy myös silloin tällöin niin, että LAR-tiedosto hajoittaa Liferayn tietokannan tai jotkut käyttäjäoikeudet eivät siirry oikein.

Liferay on huono valinta projektimme käyttöliittymäksi. Emme käytä juurikaan siinä mukava tulevia ominaisuuksia. Olemme myös kustomoineet sitä, joten sen päivittäminen uuteen versioon on työlästä. Liferay saattaa olla hyvä valinta jos siinä tulevat ominaisuudet miellyttävät. Siitä huolimatta se on aikamoinen monoliitti ja kevyempiäkin ja modulaarisempia ratkaisuja on olemassa.

Comments

Popular posts from this blog

I'm not a passionate developer

A family friend of mine is an airlane pilot. A dream job for most, right? As a child, I certainly thought so. Now that I can have grown-up talks with him, I have discovered a more accurate description of his profession. He says that the truth about the job is that it is boring. To me, that is not that surprising. Airplanes are cool and all, but when you are in the middle of the Atlantic sitting next to the colleague you have been talking to past five years, how stimulating can that be? When he says the job is boring, it is not a bad kind of boring. It is a very specific boring. The "boring" you would want as a passenger. Uneventful.  Yet, he loves his job. According to him, an experienced pilot is most pleased when each and every tiny thing in the flight plan - goes according to plan. Passengers in the cabin of an expert pilot sit in the comfort of not even noticing who is flying. As someone employed in a field where being boring is not exactly in high demand, this sounds pro...

PydanticAI + evals + LiteLLM pipeline

I gave a tech talk at a Python meetup titled "Overengineering an LLM pipeline". It's based on my experiences of building production-grade stuff with LLMs I'm not sure how overengineered it actually turned out. Experimental would be a better term as it is using PydanticAI graphs library, which is in its very early stages as of writing this, although arguably already better than some of the pipeline libraries. Anyway, here is a link to it. It is a CLI poker app where you play one hand against an LLM. The LLM (theoretically) gets better with a self-correcting mechanism based on the evaluation score from another LLM. It uses the annotated past games as an additional context to potentially improve its decision-making. https://github.com/juho-y/archipylago-poker

Careful with externalTrafficPolicy

On a project I am working on is hosted in an EKS cluster with the NGINX ingress controller (the one maintained by Kubernetes). It is deployed using it's official official Helm chart, which I realized, after a lengthy debugging session, was a mistake. The initial setup I aimed to improve had several flaws. Firstly, we were using the AWS Classic Load Balancer in front of the nginx ingress in the cluster, which has been deprecated for some time (years?). Continuing to use it makes little sense to us. The second issue was that we were only running one(!) nginx pod, which is quite sketchy since the exposed web services had essentially no high availability.  I switched to the Network Load Balancer (NLB), which was straightforward - I just needed to change the ingress-nginx service annotation to specify the load balancer type as NLB: service.beta.kubernetes.io/aws-load-balancer-type: nlb However, increasing the replica count turned out to be tricky. When I bumped it up to two, I began to ...